Contents lists available at SciVerse ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Single crystalline lithium titanate nanostructure with enhanced rate performance for lithium ion battery

Jun Lu, Caiyun Nan, Qing Peng, Yadong Li*

Department of Chemistry, Tsinghua University, Beijing 100084, PR China

A R T I C L E I N F O

ABSTRACT

Article history: Received 17 June 2011 Received in revised form 1 November 2011 Accepted 15 November 2011 Available online 9 December 2011

Keywords: Lithium titanate oxide Single crystalline Low-temperature transformation at 400 °C from cubic NaCl type $(Li_{0.4}H_{0.6})_2$ TiO₃ nanocrystals that are prepared from hydrothermal synthesized α -Li₂TiO₃. The prepared Li₄Ti₅O₁₂ nanocrystals show reduced charge-transfer impedance and exhibit favorable performance under high current charging/discharging due to the reduced Li⁺ ion diffusion path. © 2011 Elsevier B.V. All rights reserved.

Here we report the synthesis and electrochemical performance of 40 nm near-uniform lithium titanate

(Li₄Ti₅O₁₂) single crystals. The cubic spinel Li₄Ti₅O₁₂ nanocrystals are transformed without size changes

1. Introduction

Secondary lithium ion batteries (LIBs) have been of great potential for applications in the hybrid electric vehicles (HEVs) and electric vehicles (EVs), due to the unique features such as high energy density and efficiency, long cycling life and environmental friendliness [1–3]. The key challenges for LIBs have been the insufficient power density and safety issues which are aroused from the intrinsic low conductivities of materials and the side reactions with the electrolytes under extreme operation conditions, respectively [4–8]. To solve these problems, nanostructured forms of materials with stable structure and inert reactivity to electrolytes have attracted tremendous attention, because these nanomaterials have shown excellent rate capability as well as safety due to the reduced diffusion time for Li⁺ ions and surface current density in terms of $\tau \propto 1/R^2$ and $i \propto R$, respectively [9–11]. Nanostructured spinel Li₄Ti₅O₁₂ is one of the examples which have been regarded as potential candidate for anode materials in power LIBs [12-17].

The outstanding features of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ nanostructure can be summarized as follows: (1) the zero-strain structure in which the insertion/desertion of Li⁺ ions occur on tetrahedral 8a and octahedral 16c sites with tiny lattice change [18–22]; (2) the potential based on Ti³⁺/Ti⁴⁺ redox couple is 1.5 V verse Li metal, so high that no reduction of organic electrolytes into surface electrolyte interface (SEI) could occur, and Li dendrites are unlikely to form even when over discharged [23,24]; (3) the Li⁺ insertion/desertion

reactions are highly reversible compared to graphite and alloys, ensure this material with high columbic efficiency and long cycling life [15]; (4) nanostructures of $Li_4Ti_5O_{12}$ show favorable rate capability as the Li⁺ diffusion path becomes short and the surface contact area is large [2,5,8]. These features make $Li_4Ti_5O_{12}$ nanomaterials the ideal candidate for anode in high power LIBs, even though the 175 mAh g⁻¹ specific capacity is not in favor of this spinel material. Recently, efforts have been made to the synthesis and electrochemical investigation of nanostructured $Li_4Ti_5O_{12}$ materials, including 1D nanorods [25,26], 2D nanosheets [27], hollow spheres [28,29] and assembled microspheres [30].

While the perspective of nanostructured $\text{Li}_4\text{Ti}_5\text{O}_{12}$ is fascinating, the synthesis of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ nanomaterials with uniform morphology and single crystalline nanostructure has been a challenge. The reason for the difficulty may be this: sintering of the material accompanying the essential high-temperature calcinations (500–1000 °C) in conventional approaches would destruct the morphologies of the nanostructures and result into wide size-distributed materials [31–33]. The most effective solution to the sintering is to prepare $\text{Li}_4\text{Ti}_5\text{O}_{12}$ nanostructure at the convenient temperature low enough to prevent the sintering. As a result, convenient low-temperature approaches for uniform single crystalline $\text{Li}_4\text{Ti}_5\text{O}_{12}$ nanostructure for the application of this spinel material in high power LIBs.

In this effort, we propose a low-temperature strategy for near-uniform Li₄Ti₅O₁₂ single crystals with 40 nm in size. By taking advantage of metastable cubic (Li_{0.4}H_{0.6})₂TiO₃ nanocrystals delithiated from α -Li₂TiO₃ as the intermediate, well dispersed crystalline Li₄Ti₅O₁₂ nanocrystals are obtained at 400 °C for 2 h. The as-synthesized sample nanocrystals are phase pure cubic spinel

^{*} Corresponding author. Tel.: +86 10 62772350; fax: +86 10 62788765. *E-mail address*: ydli@mail.tsinghua.edu.cn (Y. Li).

^{0378-7753/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2011.11.032

 $Li_4Ti_5O_{12}$. It has been clear that the sizes, surface areas and morphologies of the samples before and after the calcination treatment are in well accordance by various characterizations, indicating the calcination at 400 °C is sintering-resistant. Impedance spectroscopy (EIS) and galvanostatic tests indicate that the 40 nm single crystalline $Li_4Ti_5O_{12}$ nanomaterials exhibit reduced charge-transfer impedance and enhanced rate performance comparing with the reference sample synthesized at 700 °C.

2. Experimental

2.1. Synthesis of Li₄Ti₅O₁₂ nanostructure

The reagents were purchased from China National Medicines Corp., Ltd. Hydrothermal method similar with Ref. [34] has been applied to synthesize α -Li₂TiO₃, using 4.5 nm anatase TiO₂ prepared using the method in Ref. [35]. 0.5 g as-prepared anatase TiO₂ was added into 2 M, 40 mL LiOH aqueous solution under vigorous stirring. The mixture was transferred into a Teflon-lined autoclave, and then maintained at 160 °C for 48 h. The precipitate collected from the bottom of the auto-clave by centrifugation was whitecolored α -Li₂TiO₃, with a much larger Li/Ti mole ratio than 0.8 for Li₄Ti₅O₁₂. To prepare (Li_{0.4}H_{0.6})₂TiO₃, approximately 10 mL, 1 M HCl aqueous solution was applied to exchange excess Li⁺ ions to make the Li/Ti ratio 0.8. After washing, the product was further centrifuged and dried in the 70 °C oven. The calcinations of product were carried out at 400 °C for 2 h in which nanosized Li₄Ti₅O₁₂ was obtained. In addition, reference sample was prepared from the product at 700 °C for 2 h.

2.2. Characterizations

The powder X-ray diffraction patterns of Li_{0.8}H_{1.2}TiO₃ and Li₄Ti₅O₁₂ synthesized at 400 °C and 700 °C were collected on Rikagu D/max 2500 with Cu K α radiation (λ = 0.154056 nm). The sizes and morphologies of (Li_{0.4}H_{0.6})₂TiO₃ and Li₄Ti₅O₁₂ synthesized at 400 °C were characterized by TEM (JEOL JSM-6301F at 100 kV), FESEM (LEO-1530) and HRTEM (FEI Tecnai G2 F20 S-Twin working at 200 kV). The thermal gravity curve of (Li_{0.4}H_{0.6})₂TiO₃ was recorded on TGA 2050 from room temperature to 800 °C at a heating rate of 15 °C min⁻¹ under air flow. The FT-IR spectra of (Li_{0.4}H_{0.6})₂TiO₃ were collected on Perkin-Elmer Spectrum GX. The specific surface area of (Li_{0.4}H_{0.6})₂TiO₃ and 400 °C prepared Li₄Ti₅O₁₂ were measured by BET method using Quantachrome, Autosorb-1. Also, X-ray photoelectron spectroscopy (XPS) characterization was carried out on PHI-5300 to determine the valance of Ti element in (Li_{0.4}H_{0.6})₂TiO₃.

2.3. Electrochemical tests

CR2016 coin-type cells were employed to characterize the electrochemical properties of nanostructured and reference $Li_4Ti_5O_{12}$. Blends of active material, acetylene black and PTFE in the mass ratio of 8:1:1 were fully grounded and then pasted on copper foil with ~3.5 mg cm⁻² loading density. Then the loaded copper foil was dried in a 120 °C vacuum oven for 12 h. Coin-type cells were fabricated in an Ar-filled glove box using lithium metal as the counter electrode, celgard 2300 membrane as the separator and 1 M LiPF₆ solution in DMC/EC (1:1 in volume) as the electrolyte. The rate and cycling examinations were carried out on battery testing system (BTS-5V 5 mA, Neware) at a voltage range of 2.5–0.9 V. The electrochemical impedance spectroscopy (EIS) measurement was carried out on CHI 660D electrochemical station with the frequency range of 10 kHz to 0.1 Hz and RMS potential of 10 mV.

Fig. 1. XRD pattern for $Li_4Ti_5O_{12}$ single crystalline nanoparticles (a) and delithiated α -Li₂TiO₃ nanocrystals (b).

3. Results and discussion

3.1. Structural and morphology characterizations

Fig. 1 shows the XRD patterns of as-synthesized sample after and before 400 °C treatment. The diffraction pattern of calcination product, Li₄Ti₅O₁₂ is shown in Fig. 1a. The pattern is identical with the standard Li₄Ti₅O₁₂ (JCPDS File No. 49-0207), which confirms spinel structure of product. No peaks of impurities such as TiO_2 , α or γ -Li₂TiO₃ are found in the pattern, indicating the transformation though the calcinations temperature was completed at 400 °C. The diffraction pattern of delithiated α -Li₂TiO₃ nanocrystals in Fig. 1b is identical with the cubic NaCl type α -Li₂TiO₃ with Li⁺ and Ti⁴⁺ cation disorder which has been reported in Refs. [34,36]. The peaks and corresponding *d*-spacings that are $2\theta = 43.52^{\circ}$ with d = 2.079 Å, 63.27° with 1.469 Å and 79.94° with 1.199 Å, respectively, could be indexed as (200), (220) and (222) according to the previous result of synchrotron measurements. As the delithiated forms of α -Li₂TiO₃ whose formula could be expressed as $(Li_{1-x}H_x)_2$ TiO₃ are almost identical by XRD, further characterizations are carried out to determine the exact formula of the delithiated α -Li₂TiO₃.

The TGA curve in Fig. 2a shows the only weight-loss region locates at 20–400 °C with weight loss of 10.2 wt.%, indicating that the hypothetical formula of delithiated α -Li₂TiO₃ could be (Li_{0.4}H_{0.6})₂TiO₃ whose theoretical weight loss is 10.5 wt.%. It is

Fig. 2. TGA curve (a), FT-IR spectra (b) and XPS spectra (c) of (Li_{0.4}H_{0.6})₂TiO₃.

worthy noting that the Li/Ti mole ratio of $(Li_{0.4}H_{0.6})_2TiO_3$ is 0.8, exactly the Li/Ti mole ratio in Li₄Ti₅O₁₂ product, confirming that the hypothetical formula is rational, and that the Li⁺ ions in metastable α -Li₂TiO₃ could be ion-exchanged and exactly tuned by HCl, in consistent with the previous work [34,37]. Notably, the flat plateau beyond 400 °C suggests that the transformation toward Li₄Ti₅O₁₂ completes at 400 °C which is confirmed in the XRD pattern of the 400 °C product. In the FT-IR spectra in Fig. 2b, wide, strong peak at 3700–2500 cm⁻¹ (hydrogen-bonded O–H stretching) indicates the existence of O–H bonds in the structure which is in consistent with the hypothetical formula [36–38]. The 1516, 1440 and 866 cm^{-1} peaks could be assigned to CO₃²⁻ species, for (Li_{0.4}H_{0.6})₂TiO₃ would react with H₂O and CO₂ to yield Li₂CO₃ when exposing to the atmosphere, which has been reported previously [34,36]. And the final peak at 652 cm^{-1} could be the absorption of stretching Ti–O bond. From XPS plot of delithiated α -Li₂TiO₃ in Fig. 2b, the peaks of Ti 2P_{3/2} and 2P_{1/2} locate at 458.6 and 464.6 eV, respectively, indicating +4 chemical valance of Ti element, which is in consistent with chemical formula and the literature [39,40].

The morphologies and sizes of delithiated α -Li₂TiO₃ and Li₄Ti₅O₁₂ nanocrystals are characterized by TEM and SEM. In TEM image for α -Li₂TiO₃ (Fig. 3a), the crystal size is around 40 nm with smooth surface and near-cubic shape with narrow size distribution. Seen from Fig. 3b, the Li₄Ti₅O₁₂ nanostructure are cubic-like in shape and 40 nm in size. The size of the spinel material is relatively uniform, and boundaries between the Li₄Ti₅O₁₂ nanocrystals are clear, indicating a narrow size distributions for α -Li₂TiO₃ and Li₄Ti₅O₁₂ samples are similar from the TEM characterizations, showing that the calcination operates without aggregation of the delithiated α -Li₂TiO₃. The SEM images further confirm the similarity between two nanocrystals. In both SEM images (Fig. 3c and d), cubic-like nanocrystals are near-uniform and well dispersed.

To get information of the specific surface area change caused by the calcination process, BET analysis is carried out for delithiated α -Li₂TiO₃ and Li₄Ti₅O₁₂ nanocrystals. The measured specific surface areas for delithiated α -Li₂TiO₃ and Li₄Ti₅O₁₂ materials are 45.7 and 43.7 m² g⁻¹, respectively. The average size for Li₄Ti₅O₁₂ calculated from the BET surface area by the equation $S = 6/\rho R$ is 39 nm, which is in well agreement with the observation in the TEM image (Fig. 3b). The preserved surface area is another piece of evidence that the low-temperature calcination process is sintering-resistant.

HRTEM and selected area electron diffraction (SAED) images for both samples are present in Fig. 4a–d. The HRTEM image for delithiated α -Li₂TiO₃ crystals (Fig. 4a) shows a size ranges from 30 to 50 nm, and the exact shape becomes sphere-like. The *d*-spacings in SAED of delithiated α -Li₂TiO₃ in Fig. 4b are 2.40, 2.08 and 1.49 Å, respectively, matching the *d*-spacings of (111), (200) and (022) facets of α -Li₂TiO₃ reflections in Ref. [34]. These observed lattice spacings have also been compared with that of spinel Li₄Ti₅O₁₂ considering that the metastable α -Li₂TiO₃ would transform to Li₄Ti₅O₁₂ under the electron beam of HRTEM, and no rational match with spinel Li₄Ti₅O₁₂ was found. For Li₄Ti₅O₁₂ (Fig. 4c and d), the nanostructure indicates the product Li₄Ti₅O₁₂ is well crystalline with clear lattice fringes and smooth surface, and the discernable vacancies in the particle could be the result of the release of H₂O during calcination. Indexed diffraction pattern confirms the single crystalline structure, as only one series of diffraction pattern is present.

As a conclusion of characterizations, single crystalline Li₄Ti₅O₁₂ nanostructure with a narrow size distribution and well dispersion is obtained, and the method is sinter-resistant as well as convenient. The scheme for our strategy is present in Scheme 1. The transformation of delithiated cubic NaCl-type α -Li₂TiO₃ to cubic spinel Li₄Ti₅O₁₂ is carried out at the calcination temperature of 400 °C, which is lower than the temperature (500-1000 °C) applied in other literature. The low-temperature transformation of α -Li₂TiO₃ to Li₄Ti₅O₁₂ nanocrystals could be relevant with the thermodynamic and structural properties of metastable $(Li_{0.4}H_{0.6})_2$ TiO₃. The structural metastability of $(Li_{0.4}H_{0.6})_2$ TiO₃ reduces Gibbs free energy change for total reaction, and the structural similarity of cubic $(Li_0 4H_{0.6})_2 TiO_3$ and cubic $Li_4 Ti_5 O_{12}$ reduces activated energy for cation rearrangement during the structural changes, comparing with the traditional transformation from rutile or anatase TiO₂ and lithium salt to Li₄Ti₅O₁₂ [36]. Besides, that atom-scale blending of Li⁺ and Ti⁴⁺ ions in the (Li_{0.4}H_{0.6})₂TiO₃ structure would shorten the time needed for transformation completion in terms of improved reaction rate, since the rate of solid-state reaction and the mixing state of precursor are positively related.

3.2. Application of Li₄Ti₅O₁₂ single nanocrystals in Li-ion battery

The electrochemical tests of spinel Li₄Ti₅O₁₂ nanostructure and reference sample are carried out by galvanostatic methods. It should be noted that the reference sample with spinel Li₄Ti₅O₁₂ pure phase and a BET surface area of 22.2 m² g⁻¹ is prepared with the identical delithiated α -Li₂TiO₃ precursor at 700 °C for 2 h (XRD, SEM are available in supporting information), and consists of microparticle together with nanoparticles. Figs. 5 and 6 present the rate performances and the discharge curves of single crystalline

Scheme 1. Two-step route for spinel $Li_4Ti_5O_{12}$ single crystals with morphology preservation.

Fig. 3. TEM and SEM images for (Li_{0.4}H_{0.6})₂TiO₃ nanocrystals (a, c) and Li₄Ti₅O₁₂ single crystals (b, d).

Li₄Ti₅O₁₂ and reference sample cycled from 0.5 C to 5 C for 10 times each. In Fig. 5, the segments for the Li₄Ti₅O₁₂ nanocrystals at different rates are flat, and the discharge-charge plots almost overlap for all cycles except the first one, indicating the well cycling performance as well as the good columbic efficiency of the Li₄Ti₅O₁₂ material. The initial and second discharge capacities of nanostructured sample at 0.5 C are $184\,\text{mAh}\,\text{g}^{-1}$ and $175\,\text{mAh}\,\text{g}^{-1}\text{,}$ and the discharge/charge capacity for 0.5 C retained an accessible capacity of 172 mAh g⁻¹ with well reversibility. For the reference sample, 173 and 165 mAh g^{-1} are the initial and second discharge capacities, and 162 mAh g^{-1} is the average capacity for the rest cycles of the 0.5 C step. When the current rate increases, the nanostructured sample delivers 165, 159, 156, 150 and 140 mAh g^{-1} at 1, 2, 3, 4 and 5 C, respectively, with well stability and reversibility. To the reference sample, low rate capability and cycling instability are found as the capacity decrease toward increased rate is serious. When the two samples get back to 1 C cycling after 5 C, the high capacities and well cycling properties are retained, showing the cycling stability of Li₄Ti₅O₁₂. The compare on rate capabilities of spinel Li₄Ti₅O₁₂ nanostructure and reference shows that the near-uniform nanomaterial has a larger capacity as well as better cycling stability under higher rates.

For close inspections, the final discharge curves of samples for every rate step are present in Fig. 6. It is found that the

voltage plateaus for the two-phase reaction are about 1.5 V. Meanwhile, the voltage plateau and specific capacities for both samples drop when the rate increases due to the electric resistance. The voltage plateaus for Li₄Ti₅O₁₂ single crystals last longer than those of the reference sample, while the voltage drops for the single crystals caused by the polarization are close to the reference sample. As mentioned above, the 400 °C calcinated sample has a large specific surface area and reduced Li⁺ ion diffusion path. What we find from the compare of discharge curves is that electrical resistances for both samples are similar, while the percentage of Li₄Ti₅O₁₂ participating in the charging/discharging process increases for the nanosized sample because nanosized Li₄Ti₅O₁₂ material makes Li⁺ easier to insert/desert from the material. This observation indicates that the improved capacity of Li₄Ti₅O₁₂ nanomaterial under high charging/discharging process is more relevant with the nanosized Li⁺ ion diffusion path of the nanostructure rather than reduced polarization. Also, the single crystalline structure of Li₄Ti₅O₁₂ nanocrystals could also help to make Li⁺ ions easier to come through the material, because no crystal boundaries would block the diffusion path in the single crystals of Li₄Ti₅O₁₂ and Li₇Ti₅O₁₂ during the charging/discharging process. Further experiments shall be carried out so as to understand the impact of single crystalline structure on the electrochemical properties.

Fig. 4. HRTEM image and SAED pattern for (Li_{0.4}H_{0.6})₂TiO₃, the inset box is selected area for electron diffraction (a, b); HRTEM image and SAED for Li₄Ti₅O₁₂ single crystals (c, d).

Fig. 5. Cycling performances for the nanostructured and reference $Li_4Ti_5O_{12}$. Filled dots are for nanocrystals, and hollow dots are for reference sample. Both batteries are cycled from 0.5 C to 5 C and then to 1 C, each for 10 circles.

Fig. 6. Discharge curves for the nanocrystalline and reference samples. Charge/discharge rates range from 0.5, 1, 2, 3, 4 to 5 C for both materials.

Fig. 7. Nyquist plots for the nanocrystalline and reference samples. R_s , R_{ct} and C_{dl} of the equivalent circuit in the inset represent the electrolyte resistance, charge-transfer resistance for both Li⁺ ions and electrons, and double layer capacitance, respectively.

Table 1 Simulated value for R_s , R_{ct} , and C_{dl} parameters of the nanocrystals and reference sample.

	$R_{\rm s}\left(\Omega\right)$	$R_{\rm ct}\left(\Omega\right)$	$C_{\rm dl}$ (F)
Nanocrystals	4.5	441	5.2E-6
Reference sample	3.8	1453	7.4E-6

To explorer the relevance of electrochemical impedances with the nanostructured and microsized materials, electronic impedance spectroscopy (EIS) measurements are carried out for nanostructured and reference samples before galvanostatic tests. Fig. 7 shows the EIS curves in Nyquist plot and equivalent circuit for the samples. For both samples, similar semicircles at the high-to-medium frequency region and sloping lines at low frequency region indicate that the electrochemical mechanism for two samples are identical, and are consistent with the Randles electroinsertion mechanism. The semicircle corresponding to the interfacial electrochemical reactions is mainly relevant with the charge-transfer resistance, and the sloping lines at low frequency shows the Li⁺ ion diffusion in the solid-state electrode material. Slight depressions for both semicircles indicate that the active materials for electrodes are sub-microsized, which is in consistent with TEM and SEM observations of Li4Ti5O12 nanocrystals and the reference material [41]. Considering the impedances aroused from the electrolyte and charge-transfer process, R_s and R_{ct} are calculated from the equivalent circuit and listed in Table 1. From the table, it shows that the single crystalline $Li_4Ti_5O_{12}$ nanomaterial exhibits similar R_s and much reduced R_{ct} to those of reference Li₄Ti₅O₁₂. The larger BET surface area of the spinel nanocrystals could be the reason for the small R_{ct} parameter, which makes the charge transfer on the interface of spinel material and electrolyte easy and further helps to promote the rate performance.

4. Conclusions

In summary, we propose a convenient strategy for $Li_4Ti_5O_{12}$ spinel nanomaterial as the anode for LIBs with profound rate capability. By various characterizations, it has been proved that, the strategy that applies delithiated metastable α -Li₂TiO₃ nanocrystals as the precursor has not only turned Li₄Ti₅O₁₂ into 40 nm single crystalline nanomaterials but also preserved the

size, surface area and morphology of the precursor by reducing the time and temperature for annealing. $Li_4Ti_5O_{12}$ nanomaterial with reduced charge-transfer impedance delivers profound rate and cycling capability, showing its potential for application in high power LIBs. Furthermore, it is indicated that the improved capacity and reduced R_{ct} of the $Li_4Ti_5O_{12}$ nanomaterial can be attributed to nanosized distance for Li^+ ion diffusion in single nanocrystals and large surface area, respectively.

Acknowledgements

This work was supported by the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (2011CB932401) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 20921001).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jpowsour.2011.11.032.

References

- [1] J.M. Tarascon, M. Armand, Nature 414 (2001) 359.
- [2] P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930.
- [3] M.S. Whittingham, Chem. Rev. 104 (2004) 4271.
- [4] N. Jansen, A.J. Kahaian, K.D. Kepler, P.A. Nelson, K. Amine, D.W. Dees, D.R. Vissers, M.M. Thackeray, J. Power Sources 81-82 (1999) 902.
- [5] J.B. Goodenough, Y. Kim, Chem. Mater. 22 (2010) 578.
- [6] Y.H. Rho, K. Kanamura, J. Solid State Chem. 177 (2004) 2094.
- [7] M. Venkateswarlu, C.H. Chen, J.S. Do, C.W. Lin, T.C. Chou, B.J. Hwang, J. Power Sources 146 (2005) 204.
- [8] Y.G. Guo, J.S. Hu, L.J. Wan, Adv. Mater. 20 (2008) 2878.
- [9] J. Chen, F.Y. Cheng, Acc. Chem. Res. 42 (2009) 713.
- [10] F.Y. Cheng, J.Z. Zhao, W. Song, C.S. Li, H. Ma, J. Chen, P.W. Shen, Inorg. Chem. 45 (2006) 2038.
- [11] X.L. Xiao, L. Wang, D.S. Wang, X.M. He, Q. Peng, Y.D. Li, Nano Res. 2 (2009) 923.
 [12] K. Amine, I. Belharouak, Z.H. Chen, T. Tran, H. Yumoto, N. Ota, S.T. Myung, Y.K.
- Sun, Adv. Mater. 22 (2010) 3052. [13] W.J.H. Borghols, M. Wagemaker, M.U. Lafont, E.M. Kelder, F.M. Mulder, J. Am.
- Chem. Soc. 131 (2009) 17786. [14] S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon, A.K. Shukla,
- Chem. Mater. 22 (2010) 2857. [15] H. Jiang, E. Hosono, M. Ichihara, I. Honma, H.S. Zhou, J. Electrochem. Soc. 155 (2008) A553.
- [16] T. Ohzuku, A. Ueda, N.J. Yamamoto, J. Electrochem. Soc. 142 (1995) 1431.
- [17] T.F. Yi, L.J. Jiang, J. Shu, C.B. Yue, R.S. Zhu, H.B. Qiao, J. Phys. Chem. Solids 71 (2010) 1236.
- [18] M.M. Thackeray, J. Electrochem. Soc. 142 (1995) 2558.
- [19] S. Schamer, W. Weppner, P. Schmid-Beurmann, J. Electrochem. Soc. 146 (1999) 857.
- [20] P.P. Prosinni, R. Mancini, L. Petrucci, Solid State Ionics 144 (2001) 185.
- [21] D.W. Murphy, M. Greenblatt, S.M. Zahurak, R.J. Cava, J.V. Waszczak, W.G. Hull, R.S. Hutton, Chim. Miner. 19 (1982) 441.
- [22] S. Arico, P.G. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijik, Nat. Mater. 4 (2005) 366.
- [23] M. Wagemaker, D.R. Simon, E.M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lutzenkirchen-Hecht, R. Frahm, F.M. Mulder, Adv. Mater. 18 (2006) 3169.
- [24] L. Kavan, M. Gratzel, Electrochem. Solid State Lett. 5 (2002) A39.
- [25] J.R. Li, Z.L. Tang, Z.T. Zhang, Electrochem. Commun. 7 (2005) 894.
- [26] Y. Li, G.L. Pan, J.W. Liu, X.P. Gao, J. Electrochem. Soc. 156 (2009) A495.
- [27] J.Z. Chen, L. Yang, S.H. Fang, Y.F. Tang, Electrochem. Acta 55 (2010) 6596.
- [28] C.H. Jiang, Y. Zhou, I. Honnma, T. Kudo, H.S. Zhou, J. Power Sources 166 (2007) 514.
- [29] C.Y. Lin, J.G. Duh, J. Alloys Compd. 509 (2011) 3680.
- [30] L.F. Shen, C.Z. Yuan, H.J. Luo, X.G. Zhang, K. Xu, Y.Y. Xia, J. Mater. Chem. 20 (2010) 6998.
- [31] C.H. Jiang, M. Ichihara, I. Honnma, H.S. Zhou, Electrochem. Acta 52 (2007) 6470.
 [32] A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon, A.K. Shukla,
- Chem. Mater. 22 (2010) 2857.
- [33] J. Lim, E. Choi, V. Mathew, D. Kim, D. Ahn, G. Gim, S.H. Kang, J. Kim, J. Electrochem. Soc. 158 (2011) A275.
- [34] A. Laumann, K.T. Fehr, M. Wachsmann, M. Holzapfel, B.B. Iversen, Solid State Ionics 181 (2010) 1525.
- [35] C. Wang, Z.X. Deng, R.D. Li, Inorg. Chem. 40 (2001) 5120.

- [36] D. Fattakhova, V. Petrykin, J. Brus, T. Kostlánová, J. Dědeček, P. Krtil, Solid State Ionics 176 (2005) 1877.
- [37] V.M. Zainullina, V.P. Zhukov, T.A. Denisova, L.G. Maksimova, J. Struct. Chem. 44 (2003) 180.
- [2005] 100.
 [38] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, sixth ed., Wiley, New Jersey, 2009.
- [39] C.H. Jiang, E. Hosono, M. Ichihara, I. Honnma, H.S. Zhou, J. Electrochem. Soc. 155 (2008) A553.
- (2008) A553.
 [40] G.E. Muilenherg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, 1979.
 [41] R. Dedryvere, D. Foix, S. Franger, S. Patoux, L. Daniel, D. Gonbeau, J. Phys. Chem.
- C 114 (2010) 10999.